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1    Introduction 
 
Before theory of numbers dispose an extensive area of "Automata Machine Configuration 2x3" and one interesting 
problem. Let’s formulate the definition of it for one dimension case. 
 
2    Reversible cellular machine on the graph 
 
Let’s be mixed, finite graph ( , , )G V E A= . (Author used determination from this resource 

http://en.wikipedia.org/wiki/Graph_%28mathematics%29, all except determination is not needed there!) 

     Here { }iV v=  is the node of graph, { }iE e=  directed edges and { }iA a=  undirected. Our graph is ordinary and 

hence do not contains loops and multiple edges. (Briefly review, that directed edges - is the arrow from one node to 
another, undirected is simply junction among the nodes. We can tell that there is two arrows leading from here till there 
and from there till here). 
     Definition 1. 
     If there exists closed route on directed edges (or undirected!)  
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     in which you can get around all of the nodes of the graph and return back, so let's call this graph Super Weak 
computable. 
     Definition 2. 
     If there is a route 
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     only by undirected edges – with which you can also get around all the nodes – so let's call this graph Weak 
computable. So it is clear: if the graph is Weak computable it is also Super Weak computable. 
     Let the nodes of the graph be in three color (A, B and C). 
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     So we enter two definitions 

 
 
 
 
 
 
 



 

     Transliteration of graph G ( )Gɶ  we can name colors of graph G where all nodes in color C, recolour into 

color B, and all nodes in color B recolor into C. 
 

( )G B C G⇔ ≡ ɶ  

 

     Complement of graph G ( )G  we can name colors of graph G where all nodes in color A, recolour into color B, and 

all nodes in color B recolor into A. (Usually this rule is for events when there is no nodes colored into C). 
 

( )G A B G⇔ ≡  

 
     Let's enter the rule of  transformation of colors in graph G: 

 

1t tG G+→  

 
     It depends on existence directed or undirected edges starting from this node and leading to another node, at least one 
node colored into C, or not? (Let's call this conclusion as P-conclusion). 
     So if P=0 (there is no color C colored nodes) then recolouring is 
 

 
 
     (let's give a name this recolouring as rule I). 
     And if P=1 (reverse event) realizing next way of recolouring 
 

 
 
     (let's give a name this recolouring as rule II). It is just some kind of reversible cellular automation from [1]). 
     Then… 
     Theorem 1. 
 

1t tG G−→ɶ ɶ
 

      
     Proof. 
     For proving enough to just consider all five events (shown by numbers in circles) from figure 1. 
 



 
 

Fig. 1. 
 

     Let’s take event (1). It is obvious. If we do transliteration, then CB will be BC.  
     Let’s take event (2). Recolouring rule I, then among the node of graph where directed (or undirected) edges leads 
from node 1tv −  there is no colored into C. Then in the derivative of  graph on its nodes would be no B colored. (Node of 

color B can be formed only from nodes of C). Then in transliterated graph, among at all its nodes would be no C nodes. 

That means, transfer rule would be I. And tv  in graph tGɶ  will transfer into A as it was necessary . 

     Least 3 events are considered the same way. The theorem is a simple consequence of 2 statements shown on figure 1. 
     Let action of recolouring of graphs will start at t = 0 time. And let starting colouring nodes will consist of only two 
colors: A and B. 
     That means that next step (there is no nodes C; the rule on a whole graph is I) and graph will transfer into itself 
transliteration, consisting only of A and C colors . (All nodes of color B will transfer into C, all nodes of color A will 
stay constant) . And graph “reverse time” (see Theorem 1); and all the next steps at the t = n* = - n + 1 moment our 
graph will be equal to transliteration of graph in time n.  (See figure 2). 

 

 
 

Fig. 2. Motion of recolouring of graph G. 
 
     Let’s call the point, between the conditions of graph at the time 1* and 1 Start Point (SP)… and continue the motion 
in two direction: by the time and reverse. Somewhere (because our graph defined as finite)… at time T* - T these two 
motions will meet at point GT*  - GT, and GT* will be the transliteration GT. So say, that we measure T – period (or back 



period) and call this point – Mirror Point (MP). (Here we use the main proper of reversible finite Automats. That any 
finite reversible Automat “obligated by starting point”). That is natural. If in any recoloured graph has exactly one 
previous (and it is easy to find: let’s make transliteration, then one step forward, then transliteration again), so any 
recolourings of graph are cyclic). 
     If T > 2 then Mirror Point exists. And in this case, full reverse period (2T) is an even number. (Otherwise  in Mirror 
Point graph is transliteration of itself. And that means that all nodes of graph are coloured into A, and graph is simply 
stays). 
     Let’s prove next theorem. 
     Theorem 2.  (About coloring of Mirror Point). 
     Let T > 2 and graph is Super Weak computabe. And Start Point – is state between graph colouring in 
colors A and B (G1*) and graph colouring into A and C (G1).  
     Then Mirrow Point is state between graph colouring in colors A and B (GT) and graph colouring into A and 
C (GT*). 
     Proof. 
     If in graph GT at the moment of time T would be at least one node coloured into C, then in the basements leading to it 
edges must be coloured into C (recolouring rule II) too. (That means that colour A transfer into C, also nodes B into A. 
But none of them are not transliteration of each other). And go around all the nodes along the route into “anoter side” – 
we can make a conclusion that all graph consist of nodes C. And graph transfers “all nodes is C ” – “all nodes is B ”, “all 
nodes is B” – “all nodes is C”… (T< 3). Contradiction. 
     Then the theorem of extisting of number �λ is true. 
     Theorem 3. 
     If our graph is Weak computable, then for any of our nodes vi, on the motion from SP to MP –  
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     will meet equal number of cases of nodes colored into A (NA), and B (NB), and C (NC). (And the quantity 
of nodes colored into B and C will be equal).  
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     Let’s call the value λ = NA - NBC. 
 

 
 

Fig. 3. Illustration of Theorem 3. 
 
 



     Proof. 
     Let the nodes v and u are bounded “double sided” – undirected edges. 
     Lets dispose nodes and their current colors on time axis – from Start Statement to Mirror. See figure 3. 
     Let’s pretend chess and chess moves which has no limit on move on any undirected edges and move on time axis one 
module measure maximum. 
     Look at the figure 3a. From “directed half” edges leading from node v into node u and if ut, colored into C, then one 
of the nodes vt-1, vt, vt+1,  would be colored into C also. (Let’s pretend reverse of thesis and ask which color would be 
node marked on figure 3a by central issue (node vt)? If it is colored into A, then node under it (node vt+1) colored into C. 
(Transfer rule – II). Into a color B it also could not be colored. Then node abovt it vt-1, would be colored into C. And into 
color C node (vt) also can not be painted! Then it is contradiction).  
     As our chess figure can step back  (get back on start point), that means that it fracture all nodes of graph G from t = 1 

to t = T colored into C on set of classes ,{ }v tC∪ . (Class {Cv,i} - is nodes multiplied by time set, then our pretending 

chess figure can pass from one node to another in a few steps). 
     Our graph is Weak computable and from pic 3a we can say that our chess figure can pass all nodes . That means that 
any set consists all of nodes. 
     But from fig. 3b we can make a conclusion that any nodes exists on each {Cv,i} just one time! 
     Actually … Nodes colored into C on next step transfer into B. And “double touch” is impossible.  From “directed 
half” leading from node u to node v. ut = B can’t transfer into ut+1 = С. Transfer rule II must be. And in this case ut+1 
must be A. Contradiction again. 
     From C will allways transfer to B we can make  a conclusion that NB = NC . 
     And NA = T – 2*NBC (quantity of nodes painted A) also equal for all nodes. 
     Theorem is proved. 
      
     Take Weak computable graph. Consider … 
     
     G1*, consisting of color A and B and having it own T  and λ…  
     and complement graph (!) 

     1*G  (also, naturally, consisting only from A and B colors) and having it own T  and λ . 
 
     Let’s take any node v and will consider all array of colors v(t), for a first graph G1*, from time SP- MP. Its size is T. 
     Let’s enter four arrays av(t), bv(t), cv(t), λv(t); where t = 0..T–1. 
     av(t )= 1 if v (t)=A, and av(t)=0 otherwise. The same way for bv(t), cv(t). And 
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     Let’s define three arrays Cv(k), Av(k), fv(k). (array “f “  call “integral phase”). 
     Cv(k)=0; but if we will find t, which will have value k=λv(t)/2 – integer number and that v(t)=C , then Cv(k)=1.   
     If Cv(k)=1  then we can say that fv(k)=t. Otherwise it “undefined” (fv(k)=-1). 
      
     The same way as Cv(k)  array, we can find array Av(k). 
     Av(k)=0; but if we will find t, which will have measure k=(λv(t)-1)/2 – integer number and that v(t)=A , then Av(k)=1.   
 

     And we can define these arrays for color 1*G : . ( ), ( ), ( ), ( ), ( ), ( ), ( )vv v v v v va t b t c t t A t C t f tλ . 
 
     Now… 

     If the value Т+ T  dividing into 3 and K=(Т+ T )/3 …  
     And further 7 ratio actions are right  

 

TTG G=        [1] 

λ λ= −          [2] 

T T λ− =      [3] 
 
 



     And for any node v and k = 0..K-1 
 

( ) ( ) 1vvC k C k+ =       [4] 

( ) ( ) 1vvA k A k+ =        [5] 

( ) ( )v vA k C k=             [6] 

( ) ( )v vC k A k=              [7] 

 
     … and additionally!  
     From ratio [4] we can define full integral phase modulo 2 
  

 
 
     Then for all nodes v and u additionally needed to make next ratios  
 

 
 

     (we can call these formulas “eighth” ratio). 
     If all eight ratios are right, then we can make a conclusion that G1*  and 1*G  goes from SP to MP with keeping of 
Invariant of Precise Filling (IPF). 
  
3      “X-problem of number 3” in one dimension. Definition  
 
We can tell that L nodes of graph arranged in a circle and numbered: x = 0..L-1. 
     Edges of graph defined by two integer numbers n (conventionally “left”) and m (conventionally “right”). 
     Existing only edges (x,(x-(i+1)*bi(n)) mod L) and  (x,(x+ (i+1)*bi(m))mod L) for all x and i. (Here bi(n) – items i of 
binary expansion of number n; n=b0(n)+ b1(n)*2+…+ bp(n)*2p). “Module L” showing loop of circle. Give a name to a 
such a construction Automat of Configuration 2x3 (AC23) in one dimension. 
     Let’s suppose that n and m are odd. Then our Automat is Weak computable. 

     Suppose that there exist such n an m that Automat at any L and any beginning colors G1*, and 1*G   – goes from SP 
to MP with keeping IPF. Let’s call it correct mask. In other case incorrect. And from here ….  
      
     “X-problem of number 3” in one dimension. 
     Prove (or disprove?) that the masks (1.1). (1,3), (3,5), (3,3), (5,5) ... – are correct. (For example, for the mask (1.5), 
it is known that it was false). Full list (apparently?) correct masks to the values n, m = 39 is shown in figure 4. 
 
 
 
 
 
 
 
 
 
 
 



 
 
    Fig. 4. Table showing which Weak computable masks is correct(?) (shown in gray) and incorrect (shown in black). All 
centrally symmetric (the cells on the main diagonal of the table) – is correct(?). 

 
     We illustrate, first, "the ratio number 8" for the correct masks. See Figure 5. 
 

 

 
Fig. 5. Illustration of ratio number 8 for correct masks (1,3) and (1,1). 

 

     It is evident that after the first row – our filling is in “pairs of lines”. In Figure 5, the last line of the mask 
(1.3) has an odd value. It is not necessary. They may be even. 



     Imagine outgoing, very powerful observation, which, perhaps, help us to solve some day "X-problem." 
     For this we consider a complete integrated phase modulo 3. The function F(3)

х(k ). 
    

 

 
     Then it turns out… 
     that the next line is unambiguously determined from the previous one, facing the values in the mask above 

it. (Thus, for us, the point of the mask include a "central" point). And the number of whole configurations 
which leads to the values 0, 1 and 2 are equal. See Figure 6. We call this algorithm "resolution" ; the 
corresponding table for the numbers 0, 1, 2  –  "resolution"  table; and the number of rows in our table (Cp) – 

“resolution"  constant for each correct mask. 
     That is, with the first line and the resolution table we can directly, without difficulty, restore the entire 
function F(3)

х(k). And therefore matrix Cv and Av. The criterion that we have reached the end (to MP), is 
precisely equation F(3)

х(k) mod 3 =0  to entire line (for all x). 
 

 

 
     Fig. 6. Illustration of the main observations for masks (1,1) and (3,5). The figure shows the resolution table for the 
mask (1,1) and the beginning of the table for the mask (3.5) for the numbers 0, 1, 2. Tables for the numbers -0 (3), -1 (4), 
and -2 (5) can be obtained automatically, as a "complement" of the original. 
 
     Moreover, it is clear that the resolution table have the property of "additive". That is, if one mask covers the other, 
then its resolution table includes a covered table. 
     This means that there is an infinite resolution table in one dimension. There is no doubt that a similar "X-problem of 
number 3” is present in all dimensions [2]. 
     Some interesting aspects of the "X-number of problems 3" in two dimension see in [3]. 
    You can download illustrative program here kornju.hop.ru . 
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