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Annotation. Shown “X-problem of humber 3” for one dimensiamd related observations .

1 Introduction

Beforetheory of numbers dispose an extensive area afdtAata Machine Configuration 2x3" and one interggti
problem. Let’s formulate the definition of it fone dimension case.

2 Reversible cellular machine on the graph

Let’s be mixed, finite grapié = (V, E, A . (Author used determination from this resource
http://en.wikipedia.org/wiki/Graph_%28mathematic®/&ll except determination is not needed there!)

HereV ={\} is the node of graphE ={ q} directed edges an®l={ g} undirected. Our graph is ordinary and
hence do not contains loops and multiple edgesef{Breview, that directed edges - is the arroanirone node to
another, undirected is simply junction among thda®o We can tell that there is two arrows leadingnfhere till there
and from there till here).

Definition 1.
If there exists closed route on directed eqgesindirected!)
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in which you can get around all of the nodiethe graph and return back, so let's call thiphgr8uper Weak
computable.
Definition 2.
If there is a route
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only by undirecte@&dges — with which you can also get around alhtbdes — so let's call this graph Weak
computable. So it is clear: if the graph is Weaknpatable it is also Super Weak computable.
Let the nodes of the graph be in three cdloB and C).

vO{ABG

So we enter two definitions



Transliteration of graps (G) we can name colors of graph G where all nodeslior €, recolour into
color B, and all nodes in color B recolor into C.

G(B- C)=G

Complement of grap® (G) we can name colors of graph G where all nodeslior &, recolour into color B, and
all nodes in color B recolor into A. (Usually thigle is for events when there is no nodes colanea €).

G(A= B =G
Let's enter the rule of transformation oforslin graph G:

Gt - C-:\+1

It depends on existence directed or undireetkks starting from this node and leading to aratbdeat least one
node colored into C, or ndt(Let's call this conclusion as P-conclusion).
So if P=0 (there is no color C colored nodbsh recolouring is

pP=0 v=Acv, =4
(I) v=Bov,=C
v=Cov, =B

(let's give a name this recolouring as rule 1)
And if P=1 (reverse event) realizing next vedyecolouring

v=Acv, =C

P=1 |
(II) v,=Bov, =4
v=Cov, =B

(let's give a name this recolouring as ru)eltlis just some kind of reversible cellular auation from [1]).
Then...
Theorem 1.

Gt - G\—l

Proof.
For proving enough to just consider all five evestsown by numbers in circles) from figure 1.



P:O P=1
y _ QA = A @A = C
1 ®B => C ®B => A
rule | G — G ruell G ,— G,
G+ ét Gt-1‘_ Gt

1) Node of color C always transfer into node of color B

2) Node of color B can be formed only by node of color C
Fig. 1.

Let’s take event (1). It is obvious. If we tlansliteration, then CB will be BC.
Let’s take event (2). Recolouring rule |, tr@mong the node of graph where directed (or ungic®@edges leads
from nodev,_; there is no colored into C. Then in the derivatifegraph on its nodes would be no B colored. @lofl

color B can be formed only from nodes of C). Thetransliterated graph, among at all its nodes @belno C nodes.
That means, transfer rule would be I. Audin graphCNSt will transfer into A as it was necessary .

Least 3 events are considered the same waythHorem is a simple consequence of 2 statemeognson figure 1.

Let action of recolouring of graphs will stattt = O time. And let starting colouring noded wonsist of only two
colors: A and B.

That means that next step (there is no nod#iseGule on a whole graph is 1) and graph wihifer into itself
transliteration, consisting only of A and C colof\ll nodes of color B will transfer into C, albdes of color A will
stay constant) . And graph “reverse time” (see Té®ol); and all the next steps at the t = n* =~ hmoment our
graph will be equal to transliteration of graptime n. (See figure 2).

Start Point (SP)
v, € {4, B} * v, €{4,C}

L
.
-

*=_n+ ) .
L n+l transliterations
GZ*ZGZ
Gpr= Gy

v e{4,B.C} transliterations

v e{d B,C}
Geray= Goay= GTJN ('55) C
'D
G = Gupyy = ‘f)' {%
v, €4, c} v, {4, B}
Mirror Point (MP)

Fig. 2. Motion of recolouring of graph G.

Let’s call the point, between the conditiofigi@aph at the time 1* and 1 Start Point (SP)... emdtinue the motion
in two direction: by the time and reverse. Somewl{because our graph defined as finite)... at time Tthese two
motions will meet at poinGr« - Gy, andGy+« will be the transliteratior. So say, that we measure Period (or back



period) and call this point — Mirror Point (MP). €k we use the main proper of reversible finiteofats. That any
finite reversible Automat “obligated by startingiptd). That is natural. If in any recoloured grapas exactly one
previous (and it is easy to find: let’'s make tréashtion, then one step forward, then transliteratigain), so any
recolourings of graph are cyclic).

If T > 2 then Mirror Point exists. And in thiase, full reverse period (2T) is an even num{@atherwise in Mirror
Point graph is transliteration of itself. And tmaeans that all nodes of graph are coloured intandl,graph is simply
stays).

Let’s prove next theorem.

Theorem 2. (About coloring of Mirror Point).

Let T > 2 and graph is Super Weak computalnel 3tart Point — is state between graph colouring i
colors A and B@G;+) and graph colouring into A and Gy).

Then Mirrow Point is state between graph cotauin colors A and BGy) and graph colouring into A and
C (G).

Proof.

If in graphGt at the moment of time T would be at least one ramdeured into C, then in the basements leadirg to
edges must be coloured into C (recolouring rulédd) (That means that colour A transfer into Gpalodes B into A.
But none of them are not transliteration of ead¢tegt And go around all the nodes along the routte lanoter side” —
we can make a conclusion that all graph consisbdes C. And graph transfers “all nodes is C "l-fades is B ”, “all
nodes is B” — “all nodes is C”... (T< 3). Contradati

Then the theorem ektisting of numben is true.

Theorem 3.

If our graph is Weak computable, then for ahgur nodess;, on the motion from SP to MP —

Vitzt = Mi=2 = = Vi

will meet equal number of cases of nodes eolanto A (N,), and B (N), and C (N). (And the quantity
of nodes colored into B and C will be equal).

Let's call the valua = Np - Ngc.

If edges are present

i
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Fig. 3. lllustration of Theorem 3.



Proof.

Let the nodeg andu are bounded “double sided” — undirected edges.

Lets dispose nodes and their current colorsnoa axis — from Start Statement to Mirror. Segife 3.

Let's pretend chess and chess moves whichdéimit on move on any undirected edges and mavenoe axis one
module measure maximum.

Look at the figure 3a. From “directed half'ged leading from nodeinto nodeu and ifu;, colored into C, then one
of the nodes,, i, Vi1, Would be colored into C also. (Let's pretenderse of thesis and ask which color would be
node marked on figure 3a by central issue (ngelf it is colored into A, then node under it (rogl,) colored into C.
(Transfer rule — Il). Into a color B it also couidt be colored. Then node abowit, would be colored into C. And into
color C node\) also can not be painted! Then it is contradigtion

As our chess figure can step back (get bacstart point), that means that it fracture alle®df graph G fromt=1

tot =T colored into C on set of clasidéCV’t} . (Class {G,} - is nodes multiplied by time set, then our pretig

chess figure can pass from one node to anothefew ateps).

Our graph is Weak computable and from pic 8aan say that our chess figure can pass all nodest means that
any set consists all of nodes.

But from fig. 3b we can make a conclusion @@t nodes exists on each,{Ejust one time!

Actually ... Nodes colored into C on next stemsfer into B. And “double touch” is impossiblErom “directed
half” leading from nodel to nodev. u; = B can’t transfer intai,; = C. Transfer rule Il must be. And in this casg
must be A. Contradiction again.

From C will allways transfer to B we can ma&eonclusion that fN= N .

And Ny = T — 2*Ngc (quantity of nodes painted A) also equal for aliles.

Theorem is proved.

Take Weak computable graph. Consider ...

G+, consisting of color A and B and having it ownafdA...
and complement gragh

Gr (also, naturally, consisting only from A and Bas) and having it owT and A .

Let's take any nodeand will consider all array of coloxgt), for a first graph @, from time SP- MP. Its size is T.

Let’s enter four arraya(t), b(t), c(t), A(t); where t =0..T-1.
a(t)=1ifv(t)=A, anda,(t)=0 otherwise. The same way fdn,(t), ¢,(t). And

AD=3 (2a(p)+h(P+ ol p-1)

O<pst

Let's define three arrays(k), A(K), f(k). (array“f “ call “integral phase”).
C\(k)=0; but if we will find t, which will have valu&=A,(t)/2 — integer number and thaf)=C , thenC,(k)=1.
If Ci(k)=1 then we can say thi{k)=t. Otherwise it “undefined(f,(k)=-1).

The same way &3,(k) array, we can find arraf (k).
A,(K)=0; but if we will find t, which will have measute=(A,(t)-1)/2 — integer number and thatt)=A , thenA(k)=1.

And we can define these arrays for caBar: . a, (t), by (), ¢ (1), A4 (1), A (t),_C\,(t),_fV (9.
Now...

If the valueT+ T dividing into 3 andk=(T+ T )/3 ...
And further 7 ratio actions are right

G =G [
A=-2 2]
T-T=1 [3]



And for any nodg andk = 0..K-1

C(+C(K=1 [4
AR+AR=1 [5
A(K) = G(K [6]
Cu(k=A(K [7]

... and additionally!
From ratio [4] we can define full integral eamodulo 2

J.(k) mod 2 if f(k) # -1
F2 (k) = _
2+f(k)mod2 otherwise

Then for all nodes v and u additionally neettethake next ratios
F?(0)=0 (mod 2)
Ff) (2k-1) = Ff) (2k) (mod 2)

and if K is even

F2(K-1) = F*(K-1) (mod 2)

(we can call these formulas “eighth” ratio).

If all eight ratios are right, then we can makconclusion tha,» and Gy goes from SP to MP with keeping of
Invariant of Precise Filling (IPF).

3  “X-problem of number 3” in one dimension. Dé&nition

We can tell that L nodes of graph arranged in @eisnd numbered: x = 0..L-1.

Edges of graph defined by two integer numbegjsonventionally “left”) and m (conventionally gint”).

Existing only edges (x,(x-(i+1)m)) mod L) and (x,(x+ (i+1)*§m))mod L) for all x and i. (Here;tm) — items i of
binary expansion of number n; nsh)+ by(n)*2+...+ by,(n)*2°). “Module L” showing loop of circle. Give a name &
such a constructioAutomat of Configuration 2x3 (AC23) in one dimension.

Let's suppose that n and m are odd. Then alorAat is Weak computable.

Suppose that there exist such n an m thatrAatat any L andany beginning colorsG;-, andGy - goes from SP
to MPwith keeping IPF. Let’s call itcorrect mask In other casencorrect. And from here ....

“X-problem of number 3” in one dimension.
Prove (or disprove®hat the masks (1.1). (1,3), (3,5), (3,3), (5,5)~.are correct. (For example, for the mask (1.5),
it is known that it was false). Full list (appargf) correct masks to the values n, m = 39 is shiovfigure 4.



“left” side of mask
13 5 7 9 1 13 15 17 19 21 23 25 27 29 31 33 35 37 39

| o 27 81 243 ?
g | a1 bz Loo 12 B 230 207 [ 315 ?
i 45 |135 171309 405 ? |az1] 2 243] 405
[ Eas 161 | 355] 279] 279] 355 413 395 o B e 405] ?
BT 81 | 213165351 171]485357] 2
T 215]a37] ? 489 ? Jazrjas3) 7| ? 615 ?
« ST 199] 7 [Msa1ls11] 2 |351] 2| 2] 2 s13] 2
& | T 2l 212 2)2)21212]> 2] 2]~
E & 81 |213 [ 555] ? |435|a71] ?
o |mm aeofsar] 2 |aa] 2] 2] 2
% e f ) 729 2 |611] 2| 2| ? z
% |mwn IPF broken AEEBEE EEE
N - 199 2 | 2| ? ?
[ - S . 2| 2] 2 2] 2] 2
% o 38 OEE
—— 2l2lz]2]>
T IPF acts(?) ss 7
T 21| 2] »
a7 CR
EErE 729| 2
39 - / 4
e rEmn| I I I I I I :

Fig. 4. Table showing which Weak computablekaas correct(?) (shown in gray) and incorrect ghin black). All
centrally symmetric (the cells on the main diagasfahe table) — is correct(?).

We illustrate, first, "the ratio number 8" fibve correct masks. See Figure 5.

G, E>|A|A|A|A|A|B|A|AIA|B|A|X Mask {1,3)
01234656789 10 (eEE 0=

T I

I
WIN

1-0 -0 -0 1 1 -1 1 1 1 -1 1 —
20 0 0 -1 1 -1 1 1 1 1 -] L=11 = _1 =
3 001 0 -0 0-0 1 -0 -0 0 K=34

SAlo0 0 1 o0 -0 0 0 o1 0 -0 0 =T = =
51 1. -0 1 -0 1 1 -1 0 -1 1 - T=T=51] =0

=y TN | N Y |y B | -0 1 1 1
A0 01 0 0 0 0 0 1 0 0
8.0 0 1 0 0 0 0 0 1 0 D

9 0 0 0 1 1 0 0 0 0 1 1 Mask (1,1)
1000 0 0 -1 1 0 0 0 -0 1 -
M 0 0 1 0 0 1 -1 1 1 -0 0 E.E.j
12 0 0 1 0 0 -1 -1 -1 -1 0 40
— B 1 0 0 1 1 1 4 4 1 1 1
14 -1 0 o -1 -1 1 1 -1 1 ] ] L=10 =
\_x_, 11 0 0 0 1 -1 -1 -1 -1 0 0 0 = K=7
= 16 0 0 0 1 - -1 1 1 0 0 -0 T=12|T=9 Wh=3
th 7 1 1 1 0 0 0 0 0 1 1 1
1 1 1 -1 0 0 0 0 0 11
1 0 1 1 0 0 0 0 0 0 0 0
R G, ¢IBIAIAIAIBIAIAIAIAIAI
211 1 1 0 1 -1 0 0 0 0 -1 - 01 2 3 45 6 7 8
22 -1 -1 0 -1 1 -0 0 -0 -0 1 -
23 1 1 1 0 0 1 1 1 1 0 0 —\—ﬁ'{fﬁ'ﬂ,ﬁ"{ﬂﬁﬂﬂﬁ'
24 1 1 1 0 0 1 1 1 1 0 0 "K2117u111—uu—u1
25 1 1 0 1 -1 1 -1 -1 0 1 1 ]|
31 1 0 1 1 1 1 1 1 1
2601 1 0 1 1 1 1 1 0 1 1 X 414 0 111 a1
27 0 -1 0 -1 0 0 -0 1 -0 -0 -0 \EL5|ouuufu1—ouo1
e T e B e L 6l 0 0 0 0 0 -1 0 0 0 -
28 1 1 0 1 1 1 -4 0 -1 1 -
300 1 -1 0_-1 1 - 1_-0 1 1_-
31 1 -1 0 0 0 0 0 0 0 0
gl 1 1 1 -0 -0 0 -0 -0 -0 0 -0
k 3BT 1 1 1 1 1 1T 1 11 1

Fig. 5. lllustration of ratio number 8 for correnaisks (1,3) and (1,1).

It is evident that after the first row — oillifig is in “pairs of lines”. In Figure 5, the IaBne of the mask
(1.3) has an odd value. It is not necessary. Thay ne even.



Imagine outgoing, very powerful observatiomieh, perhaps, help us to solve some day "X-probilem
For this we consider a complete integratedsptmodulo 3. The functidf® (k).

J(k) mod 3 if f(k) # -1
R |
3+f(k)mod3 otherwise

Then it turns out...
that the next line is unambiguously determifreth the previous one, facine values in the mask above

it. (Thus, for us, the point of the mask include enteal” point). And the number of whole configuosis
which leads to the values 0, 1 andr2 equal See Figure 6. We call this algoritimesolution” ; the
corresponding table for the numbers 0, 1, 2Zresolution” table; and the number of rows in our tablg) (€
“resolution" constant for each correct mask.

That is, with the first line and the resolutimble we can directly, without difficulty, reséothe entire
function F® (k). And therefore matrix, andA,. The criterion that we have reached the end (9, P
precisely equatio®®, (k) mod 3 =0to entire line (for all x).

G..p |A[A|B[AJA[B]A[A]A[A x  Mask (1,1) 0=3
0] 1] 2] 3)4]5]|6]7]8]9%9 E.E.j ~
~ 010 Dlojolo]o]o]o|o =
"K\ 1 %‘ﬂ Alal1]a]z2]2]2 1 _ 4
= 1= afofo]olz]1]1 L= 9 —
lx JAlez|2 N1 |1 ] ]2]2 |00 — K=86 _2_5
A1 l2]oMo]o]o 2|1 ]e]e T=10|T=8 =2
sil-olz2]z2 |2 2|z |z 0|2 |2
k 1
/ T
A s Mask (3,5) 20002
111 700 100 (el 20020
1141 002 00-2 10050
1-12 o-0-0 n-21 0000
20 222 120 — Jp00s
9 @I 7220 121 L=0 K= 30302
2-1-1 2-0 0 1-2-2 = T
11 022 200 T=T=9 A T
-1 141 -0 2-0 -2 0-2 10-00-2
-2 -0-0 0 221 nnit
0 X 2 G,. o [A|B[A[A[A 8320
1141 00-0 0-0-0 of 1] 2| 3] 4 90s
1-11 oo-2 0-02 10-004 -
.. . . — Ofo]ufo]ofo RN
X ulalalalal e 3328 |1
= il |afa] ol
SRR —llm 2
07 «fof Mie T 5
gl 1] 3T+

Fig. 6. lllustration of the main observatidos masks (1,1) and (3,5). The figure shows theltg®n table for the
mask (1,1) and the beginning of the table for tlask{3.5) for the numbers 0, 1, 2. Tables for taloers -0 (3), -1 (4),
and -2 (5) can be obtained automatically, as a pdement" of the original.

Moreover, it is clear that the resolution tabhve the property of "additive”. That is, if anask covers the other,

then its resolution table includes a covered table.
This means that there isiafinite resolution table in one dimension. Theraasdoubt that a similar "X-problem of

number 3” is presernh all dimensions[2].
Some interesting aspects of the "X-numberoblems 3" in two dimension see in [3].

You can download illustrative program h&ognju.hop.ru.
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