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Abstract  
Presented is the notion that a large number of objects (author called them masks) demonstrate a 
suspiciously large number of identical properties (identities). The connection between the 
identities is hard-wired and can be implemented through so-called Invariants of Precise Filling. 
The author verified the existence of these identities and also showed that even in one dimension it 
involves number 3. Author points out that even more amazing identities related to number 3 can 
exist in N dimensions, so the problem of proving their existence in N-dimensional space is called 
by author as "the X-problem of number 3". Number 3 is directly related to reversible cellular 
Automata with three states. The author used an approach based on reversible cellular Automata 
and computing for demonstration of existence of such identities in one dimension. 
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1. Introduction  

Mathematicians and physicists are well aware of a large 
number of positive attributes associated with the number 
three. 
  The author reminds that stable orbits in a central field 
with a potential inversely proportional to the distance 
from the object to the center of the force (e.g., gravity 
field or Coulomb field) exist only in a three-dimensional 
(3D) space. Yes, the 3D space has a non-sequiturial 
property: any perturbation in a position or velocity of the 
orbiting object leads to a new stable and well-defined 
orbit. This phenomenon can be described by 
corresponding solutions for the motion of a point charge 
in a Coulomb field in 3D space. There are no similar 
equations in other realms of mathematics that manifest 
such an amazing property as those describing the motion 
in 3D space. 
  We can ask the question: are there other dimensions 
(except the 3D one) where the vector product has “good” 
properties, including the most useful Jacobi identity. The 
answer is no, only in three dimensions the vector product 
has good (that is, practical) properties [1]. Therefore, the 
lack of the useful (from the viewpoint of conservation 
laws) concept for the rotor in these dimensions, renders 
the ND (N≠3) vector algebra simply out of practical 
consideration.  
  We can provide more examples, for instance, in physics 
we can see following fundamental combinations:  two by  

 
 
 
three of leptons, two by three of quarks; three colors in 
Quantum Chromodynamics (QCD), etc. Here, the author 
decided to go further and ask is there a direct(!) 
connection between the properties of number 3 and N-
dimensional integer lattice. 
  The author decided to gain an insight into this 
generalized problem of “dimension of three” using a 
computer and obtained a very interesting answer. The 
most unusual is that the author started his approach from 
a distance, more particularly he started from reversible 
Cellular Automata. 
  A lot of remarkable properties of the Cellular Automata 
has been discovered and listed in the book written by 
Stephen Wolfram [2]. Yet, here we do not need to 
consider reversible Automata of a general form, just as a 
special case, so-called cellular Automata of second-
order. 
  The concept of the second-order Automata was 
introduced by Edward Fredkin and then studied by other 
authors [3]-[5]. 
  As shown by Toffoli and Margopolus [6], any second-
order automaton may be transformed into a conventional 
cellular automaton where the transition function depends 
only on a single previous time step. It handles just three 
types of cells. We will not use the original definitions as 
"ready", "excited" and "refracted", but will refer to three 
types of the cells as A, B and C.  
 
 



2. Reversible cellular machine on the graph 

Let us prove three following simple theorems and give 
one important definition. 
  Consider mixed, finite graph ( , , )G V E A= . We are 

using the definition from the following resource: 
http://en.wikipedia.org/wiki/Graph_%28mathematics%2
9. Below, we will use only this definition and no other 
developments from the graph theory. 

  Here { }iV v=  is the node of graph, { }iE e=  are 

directed edges, and { }iA a=  are undirected edges. Our 

graph is ordinary and, therefore, does not contain loops 
and multiple edges. Briefly, a directed edge is depicted 
with an arrow from one node to another, while 
undirected edge is depicted with a simple junction 
between the two nodes. The junction can be otherwise 
depicted using two arrows: one arrow leads from node u 
to node v and another leads from node v to node u. (Fig. 
1).  Once, two nodes u and v in our combined graph are 
connected with undirected edge, these two cannot be 
connected with directed edge. (see Fig. 1, lower panel). 
 
 

 
 

Figure 1. 
 
  Definition 1. 
  The graph is called Super Weak Computable when 
there is a closed route through all the nodes that uses 
both the directed and undirected (according the 
orientation) edges   

0 0 1 1

0 1 0...
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v v v
∨ ∨∨

→ → →  

  Definition 2. 
  The graph is called Weak Computable when there is a 
route 

0 1

0 1 ...
ka aa

kv v v→ → →  

following which one can pass through all the nodes using 
only undirected edges. So, it is clear: when the graph is 
Weak Computable, it is also Super Weak computable 
(see Fig. 2). 

 

 
 

Figure 2. 
 
  Let the nodes of the graph be of three colors (A, B, and 
C). 

{ , , }iv A B C∈  

  
  Further, we introduce two definitions. 

 

 Definition one: Transliteration of graph G ( )Gɶ  is 

defined as the change in a color map of graph G where 
all the nodes of graph G colored in C are recolored into 
color B, and all nodes colored in B are recolored into 
color C. 

( )G B C G⇔ ≡ ɶ  

  Definition two: Complement of graph G ( )G  is 

defined as the change in a color map of graph G where 
all nodes colored in A are recolored into color B, and all 
nodes colored in B are recolored into A. Usually, this 
complement transformation rule is applied to the cases 
where there are no nodes colored in C. 

( )G A B G⇔ ≡  

  Let us enter the rule of transformation of colors in 
graph G: 

1t tG G+→  

  This rule depends on the existence of at least one node 
colored in C in the end of directed or undirected edges 
all of which start from the same node vi. (Let us refer this 
condition as P-condition). 
  So, if P=0 (i.e., there are no nodes colored in C), then 
one can make following recoloring 
 

 
 
  In the text below, we refer to this recoloring as rule I. 
  If P=1 (opposite situation), we make recoloring using 
following rule 
 



 
 
  We refer to this recoloring as rule II. 
  
  Theorem 1. (About reversibility). 
 

1t tG G−→ɶ ɶ
 

  Proof. 
  To prove the above theorem, it is enough to consider all 
five events (shown by numbers in circles) from Fig. 3. 
 

 
 

Figure 3. 
 
  Consider case (1). This case is obvious. If we do 
transliteration, then CB will be BC. 
  Consider case (2). Recoloring rule is rule I, so there are 
no nodes colored in C among the nodes of the graph 
where directed (or undirected) edges lead from node 

1tv − . Therefore, in the derivative of this graph (i.e., in the 

graph that emerges after recoloring) there are no nodes 
colored in B. (Note here that the nodes colored in B can 
be formed only from the nodes colored in C). 
Consequently, in the transliterated graph, it will be no C 
nodes among all its nodes. This means that the transfer 

rule is still rule I. Also node tv  in graph tGɶ  will be 

colored in A in accordance with rule I. The rest three 
cases can be considered in the same way. The theorem is 
a simple consequence of two statements shown in Fig. 3. 
  Assume that recoloring of graphs starts at time t = 0. 
Also assume that the nodes have two colors: A and B at 
the start. This means that during the next step (there are 
no nodes colored in C; so rule I is applied to the entire 
graph) the graph will be converted into transliteration of 
itself, consisting only of A and C colors. (All nodes 
colored in B will be transformed into the nodes colored 
in C, whereas all nodes colored in A will keep its color). 
So, the graph will go along reversed-time path (see 
Theorem 1).  Note: for each step taking place at time t = 
n* = - n + 1, the graph will be the transliteration of the 
same graph at time n (see Fig. 4). 

 

 
 

Figure 4. Propagation of recoloring of graph G with time. 
 
  Consider the time point located between the states of 
graph at time 1* and time 1 as the Start Point (SP) and 
continue the motion in two directions: let us called it 
“forward” time and “reversed” time. Due to the fact that 
our graph is defined as finite, these two motions (that is, 
changes in color of our graph with time) will meet at 
some time point T* - T.  The graph color “state” will be 
GT* at this point, where  GT* is the transliteration of GT. 
Let us refer to this point (graph state) as the Mirror Point 
(MP), and name T as the period (or the period of return). 
Here, we use the main property of reversible finite 
Automata: every such a construction “is obligated to pass 
through its starting point”. That property is quite natural. 
If any recolored graph has only one predecessor (and it is 
easy to find this predecessor: let us make transliteration, 
then one step forward, then make transliteration again), 
then any recoloring of the graph is cyclic. Also, there is 
no “branch” that merges with this “cycle”. 
  If T > 2, then the Mirror Point exists. In this case, full 
period of return (2T) is an even number. Otherwise, the 
graph in the Mirror Point is transliteration of itself. This 
means that all nodes of graph are colored in A, and graph 
simply stays the same. 
  Let us prove following theorems. 
  Theorem 2. (About coloring the Mirror Point). 
  Let T > 2 and the graph is Super Weak Computable. Let 
SP be the state between graph G1* that has colors A and 
B and graph G1 that has colors A and C.  
  Then MP is the state between the graph GT that has also 
only colors A and B and graph GT* that has only colors A 
and C. Besides, SP is not equal to MP. 
   



Proof. 
  Let us start with the last statement that SP is not equal 
to MP. The Mirror Point is the first time when 
transliteration of G T* at time T* equals G T at time T. If it 
is not the case, we would fold in half our Fig. 4 and 
repeat the graph construction. So, we get a contradiction. 
  If at time T graph GT has at least one node colored in C, 
then the original node where the edge leading to the node 
colored in C starts must be also colored in C. (Recoloring 
rule II cannot be applied in the Mirror Point. It means 
that nodes colored in A are transformed into nodes 
colored in C, and the nodes colored in B are transformed 
into nodes colored in A. Yet, none of the nodes is 
transliteration of each other). So, applying recoloring 
rule I and moving through all the nodes along the route 
leading to “another side”, we can make a conclusion that 
all the nodes are colored in C.  Then, the graph state 
changes from “all nodes are C” to “all nodes are B”, and 
from “all nodes are B” to “all nodes are C” (T<3). Here, 
we immediately see the contradiction. So, theorem 2 is 
proven. 
  From this theorem, follows the theorem of existing of 
number �λ. 
  Theorem 3. 
  If our graph is Weak Computable, then it follows that 
any vi of its nodes when moving from SP to MP  

, 1 , 2 ,...i t i t i t Tv v v= = =→ → →  

is transformed into equal number of nodes colored in A 
(NA), B (NB), or C (NC). Moreover, the number of nodes 
colored in B is equal to the number of nodes colored in 
C.  

B C BCN N N= ≡  

  Let us introduce parameter λ = NA - NBC. 
  Proof. 
  Let us start from arbitrary node and move around all the 
nodes in the graph following undirected edges, and then 
return to the initial node. Every new step means “plus 
one” in our new numeration. It does not matter that some 
nodes may be passed several times on our way (see Fig. 
5).  
 

 

 
 
Figure 5. Our “numeration” of the nodes. 

 

  Let us arrange the nodes along a single horizontal line 
(circle). The most important thing in our numeration is 
that to the left and right sides of any node there will be a 
node that has a “tie” with another node through an 
undirected edge.  
  Let us look at Figure 6 starting from panel (a)  
 

 
 

Figure 6. Illustration of Theorem 3. 
 

  Due to existence of the “directed half” edges leading 
from node u х+1

t  to node u х
t and due to the fact that u х

t is 
colored in C, then one of the nodes uх+1

t-1, u
 х+1

t, u
 х+1

t+1 
will be also colored in C. Let us pretend that it is not the 
case and ask which color will be for the node marked by 
a central question mark (node u х+1

t) in Figure 6a? If this 
node is colored in A, then the node beneath it (u х+1

t+1) is 
colored in C. (Note that transfer rule here is rule II). This 
node cannot be colored in color B, either.  Then node 
uх+1

t-1 above it is colored in C. Yet, node u х+1
t cannot be 

colored in C. So, we have a contradiction here. 
  Then, we also note that a “double touch” is also not 
possible: u х+1

t = B cannot be transformed into u х+1
t+1= 

С. We must remind that here we use transfer rule II.  So 
in this case, u х+1

t+1 must be colored in A. Again, we get a 
contradiction. 
  Therefore, the “double-touch” on either right or left 
sides is impossible! So, when moving from SP to MP, 
our figure consists of non-intersecting CB bands (see 
Fig. 6с). Thus, the theorem is proven. 
   
  Take Weak Computable graph. Consider graph G1*, 
consisting of colors A and B and having its own T and λ; 

also consider complementary graph 1*G  comprising only 

colors A and B with its own T  and λ . (We assume that 

Т T≥ , otherwise, just rename  G1* and 1*G ). 



  Let us take arbitrary node v for first graph G1* and 
consider the entire array of colors v(t)  the node  passes 
on its way from SP to MP. The size of this array is T. 
  Let us enter four arrays av(t), bv(t), cv(t), λv(t); where t 
= 0, 1, 2...T–1. 
  Now, av(t)=1,  if v (t)=A, and av(t)=0, otherwise. The 
same rules are true for bv(t), cv(t). 
  So 

0

( ) (2 ( ) ( ) ( ) 1)
p

v v v v
p t

t a p b p c pλ
≤ ≤

= + + −∑
 

  Let us define three arrays Cv(k), Av(k), fv(k),and let us 
call  array f  as “integral phase”. 
  Cv(k)=0; but if we can find t which makes value 
k=λv(t)/2 an integer number and therefore  v(t)=C , then 
Cv(k)=1. 
  If Cv(k)=1, then we can write that fv(k)=t. Otherwise, 
we can assume that it is “undefined”: fv(k)=-1. 
  We can determine properties of array Av(k) in the same 
way as we did for Cv(k) array: Av(k)=0; but if we can find 
t which  makes value k=(λv(t)-1)/2 an integer number 
and therefore v(t)=A, then Av(k)=1. (By analogy with 
Av(k) we can define array Bv(k), but it is easy to show 
that it coincides with Cv(k)). 
 

 
 

Fig. 7. Examples of constructing arrays Cv(k), Av(k), Bv(k),  
fv(k). For node v(t) with the beginning: B (SP) CB AA CB A 
CB AAA C and for node u(t) with the beginning: A (SP) A 
CB AAA CBCB AA C. From these bands, we can construct 
their secondary bands where the cells A are transferred 
"through" an empty cell. Because C and B are always in 
pairs, values for λλλλ(t) for the cells C are always even (see 
circled λλλλ(t) in this figure). 
   

  Now, we can define following arrays 1*G for coloring: 

( ), ( ), ( ), ( ), ( ), ( ), ( )vv v v v v va t b t c t t A t C t f tλ . 

        
  Finally, we introduce an important definition. 

  Consider the case where value Т+ T  can be divided by 

3 with no residual (K=(Т+ T )/3) and assume that all 
eight conditions are fulfilled as shown below.  
First three conditions are:  

 

TTG G=       [1] 

λ λ= −        [2] 

T T λ− =      [3] 
Next four conditions are:  
 

( ) ( ) 1vvC k C k+ =       [4] 

( ) ( ) 1vvA k A k+ =       [5] 

( ) ( )v vA k C k=          [6] 

( ) ( )v vC k A k=          [7] 

for any node v and k = 0, 1, ..., K-1. 
  Additionally, from ratio [4] we can define full integral 
phase with modulus 2 

  

 
 
  So we can write the last (eighth) condition as:  

 
 
                                      [8] 

 
 
 
 
for all nodes v and u and for any 0<k<(K+1)/2. 
  If all the above conditions are met, then we can make a 
conclusion that graphs G1* and 1*G  move from SP to MP 
with conservation of the Invariant of Precise Filling 
(IPF). 

3. “X-problem of number 3” in one 
dimension. Definition  

Consider that L nodes of the graph are placed on a circle 
and numbered as x = 0, 1, …, L-1. 
  The edges of the graph are defined by two integer 
numbers: n (conventionally “left”) and m (conventionally 
“right”). 
  There exist only edges (x,(x-(i+1)*bi(n)) mod L) and 
(x,(x+ (i+1)*b i(m))mod L) for all x and i when function 
bi is significant. Here, bi(n) is the i-th bit of binary 
expansion of number n: n=b0(n)+ b1(n)*20 + 
b2(n)*21…+ bp(n)*2p). “Mod L” shows that the circle is 
continuous and closed (no gaps). Let us refer to such a 
construction as Automat of Configuration 2x3 (AC23) in 
one dimension.  
  Suppose that the above introduced integers n and m are 
odd. Then, our Automat is Weak Computable. It is so 
because it contains all undirected edges (x, (x+1) mod L). 
One can also see that if the mask contains bits bp(n), 
bp+1(n), bp(m), bp+1(m) = 1 (e.g., masks (6,7), (6,14), 



(6,22)), then this mask (Automat) is Weak Computable 
too. 
  Suppose that there exist such n an m that Automat at 

any L having any starting colors G1* and 1*G  always 
goes from SP to MP while keeping IPF constant. Let us 
call it a “correct mask”. In other cases, the mask is 
“incorrect”. 
  From this point, we can constitute the “X-problem of 
number 3” in one dimension. 
  We can prove (or disprove) that the masks (1,1), (1,3), 
(3,5), (3,3), (5,5), etc are correct. (For example, we know 
that mask (1,5) is incorrect). A full list (more precisely, 
apparently full list) of correct masks till the values n, m = 
39 is shown in Figure 8. 
 

 
 

Figure 8. The matrix showing which of Weak Computable 
masks is correct. Correct masks are painted in different 
colors depending on N, where N is the total number of 
pixels in the mask plus one. (Note that we include a 
“central” point into our mask). Incorrect masks are shown 
in dark blue. All the central-symmetry cells (the cells on the 
main diagonal of the matrix) are correct. In cells with N 
<10 denotes the value cR (with small c) for each masks. 
Since all the values CR are odd we have introduced the 
designation cR = (CR-1) / 2. An asterisk (*) indicates that the 
test has not been completed. ("End of test" – that is 
determined entirely all 6 sub-tables, and found that they 
pass each other by substituting from a figure 11). However 
defined three sub-tables. Two stars – defined less sub-tables 
(See explanation in the text). 
 
  First, we illustrate the fulfillment of the eighth 
condition (see descrption of the conditions in the text 
above) for the correct masks (see Fig. 9). 

 

 

 

Figure 9. Illustration of fulfillment of the eighth  condition 
for correct masks (1,3) and (1,1). 
 
  It is obvious that after the first row, the filling of the 
table is going by “pairs of lines”. In Fig. 9, the last line 
number (k=33) for mask (1,3) is odd. This number 
should not necessary be odd, it can be also even. 
  Let us draw our attention to outgoing and very powerful 
observation, which, perhaps, will help us to solve the "X-
problem" some day. 
  Let us consider a complete integrated phase with 
modulus 3. So, let function F(3)

х(k ) be defined as  
    

 

 
  Then we note that the numbers in any line (except in the 
first one) are unambiguously determined from the 
previous line, facing a number F(3)

х(k) of points of the 
mask directly above it. Here, the points of the mask also 
include a "central" point. The number of all 
configurations leading to values 0, 1, 2, 3, 4, 5 are equal 
(see Fig. 10). We refer to this algorithm as Resolution; 
then we refer to the corresponding table for numbers 0, 
1, 2, 3, 4, 5 as Resolution Table (RT); finally, we refer to 
number CR of rows in each sub-tables as Resolution 

Constant for each “correct mask”. 
  So, having the first line and the Resolution Table, we 
can straightforwardly and without difficulty restore the 
entire function F(3)

х(k).  Therefore, we can restore the 
matrices Cv and Av too. The criterion that we have 
reached the end (that is, we have reached MP), is 
precisely that F(3)

х(k) mod 3 = 0  along the entire line 
(i.e., for all x). 
 



 

Figure 10. Illustrations to main observations made for 
masks (1,1) and (3,5). This figure shows the Resolution 
Table for mask (1,1) and initial lines of the Resolution 
Table for mask (3,5). We show the Resolution Table for 
numbers 0, 1, and 2 only. The Resolution Tables for 
numbers -0 (3), -1 (4), and -2 (5) can be obtained 
automatically, as "complementary" to the original RT. 

4. Resolution Table for correct masks in one 
dimension. The first observations 

4.1. First and foremost observation. 
  It is clear that the Resolution Table has very simple 
symmetry. In the case that we have only one of six (=0, 
=1, =2, =3(-0), =4(-1), =5(-2)) sub-tables, we can 
immediately determine five remaining sub-tables. To do 
this, we make a substitution as shown in Fig. 11. (In Fig. 
11, the "base number" for each of the sub-tables is shown 
in gray. Each sub-table contains the base number in all 
the cells. Such variants are shown by a dashed-line oval 
in Fig 10). 

 

 
 

Figure 11. 
 
  Let us take a sub-table to output the numbers (=0), and 
we just call it a Resolution Table (RT). 
  So, RT is the set of CR rows {a0, a1, …, aN-1}, where  

{0,1,2,3,4,5}ia ∈  (For numbers 3, 4, 5 we will use the 

old notation, or 0 , 1, 2   or -0, -1, -2 where it is 
comfortable). Note that we have an "isolated position" in 
our mask: it is a central point. 
  Let us put column number 0 as the central point in the 
Resolution Table. In order to establish a correspondence 
between the points of the mask and the columns just list 
the points of the mask from left to right. For instance, 
considering mask (3,5) we obtain: "column 0" in the 
table – the central point (offset 0), then for "column 1" – 

the point with offset -2; for "column 2" – the point with 
offset -1. Further, for the "3 column" (here we should 
jump over 0) – the point with offset 1. Finally for the last 
column, we have the point with offset 3. 
  There is one more symmetry. If the mask is mirrored 
with respect to the central point, the same 
correspondence is kept between the column and the 
points of the mask: that is, the column which offset was x 
is now assigned to a point with offset -x and so on. 
Eventually, we will end up with the same Table. Most 
likely, this symmetry is trivial. 
 
4.2. About the contents of RT. 
  The masks are divided into three classes in accordance 
with the numbers in their Resolution Tables. 
  4.2.1. Small class masks (RT contains only the numbers 
1, 2, 4(-1)).  This class is depicted by the lack of any 
symbol in the top-left corner in Fig. 8. 
  4.2.2. Middle class masks (RT contains the numbers 1, 
2, 3(-0), 4(-1), 5(-2). This class is depicted by letter ”p” 
(p stands for partial) in the top-left corner in Fig. 8. 
  4.2.3. Full class masks (RT contains all numbers 0, 1, 2, 
3(-0), 4(-1), 5(-2). This class is depicted by letter “F” in 
the top-left corner in Fig. 8. 
  Small-class masks include (apparently?) all masks with 
central symmetry (it was checked for n < 40). 
  We denote the sum in RT in zero column of number 0, 
1, 2, 3, 4, 5 as s0

+0, s0
+1, s0

+2, s0
-0, s0

-1, s0
-2. We denote the 

sum of number 0, 1, 2, 3, 4, 5 in other columns as s+0, s+1, 
s+2, s-0, s-1, s-2. 
  These values for masks (n, m) with odd n, m <19 are 
shown in Figure 12. 

 

 
 

Fig. 12. Summary of the numbers 0, 1, 2, 3(-0), 4(-1), 5(-2) 
in RT. (N-total is number of points in the mask, including 
the central point). 

 
  We can say that the correct masks are divided into 
completely correct (that is, those for which s0

+0,+2,-0,-2 = 0) 
and not completely correct. 
  Moreover, we divide completely correct masks into 
completely correct of the first kind (masks with s0

+1 = 2N-

1 where the sub-table with zero column is equal to a 



simple enumeration of all possible combinations of +1 
and -1), and of the second kind (otherwise). 
  Completely correct masks of the first kind are all 
symmetric masks for n <15, and masks (1,3), (1,7), (3,7), 
(5,7), and (3,11). 
  Completely correct masks of the second kind are masks 
(3,5), (15,17). 
  We denote RT of the mask (n, m) as [n, m], simply by 
using parenthesis instead of brackets.  
  We also point out that there is the identity between 
following RTs: [5,5] = [9,9] = [17,17] = ... = [2k +1,2k 
+1] where k > 1. 
   

  4.3. Building Resolution Tables for masks of type 
(1,2k-1). 
  First, we should number the columns. Let us do it in 
accordance with the rules described in paragraph 4.1 of 
this chapter (we put column number 0 as the central 
point, and so on). 

  Now let us sort out the rows. Assume that we have row 
(-1, 2, 0, -2, 1). After we transfer the “0-“ column (that is 
the first element, “-1”, of the given row) from the first 
position to the last position, we obtain following string: 
(2, 0, -2, 1, -1). Now consider this string as a record 
number in a heximal number system, where the bits are 
counted from right to left:  (2, -0, -2, 1, -1) = 4*60 +1*61  
+5*62 +3*63 +2*64 = 4 +6 +180 +6048 +2592 = 8830. 
Finally, we reshuffle the rows in accordance with the 
ascending order of these numbers. 
  At his point, Resolution Table for masks (1, 2k-1) can 
be easily constructed by the method of induction based 
on k (see Fig. 13 for details) 
 

 
 

Figure 13. Building a Resolution Tables for mask (1, 2k-1) 
by method of induction. 
 
  A zero column is obtained by simple linear fractal of 
the numbers 1 and -1 (see Fig. 13, zero column is shown 
on the left). Figure 13 shows the Resolution Table (see 
table on the right) for k = 1. Now, we construct the 
induction step for other columns. In one step, the number 
of rows increases by a factor of 3 (CR increases three 
times), but the number of columns increases by a factor 
of one. 

  Let us follow operations as shown in Figure 13. The 
table can be "tripled" using a trivial method, and the new 
column is obtained from the previous one in accordance 
with the table below (see Fig. 14). It can be shown that 
the obtained mask is the completely correct mask of the 
first kind. 
  Also it can be emphasized that we obtained all 
Resolution Tables for solid masks, that is masks (2k-1,2p-
1) where k, p > 0, and RT masks (1,2k +p -1) include the 
entire series with constant k+p. Yet, more will be shown 
in the next paragraph. 
 
4.4. Compatibility of Resolution Tables for various 
correct masks with the same number of columns. 
  Let us consider several masks with the same N (we 
remind here that N is the total number of pixels in the 
mask, including the central one), and check each rows of 
the Resolution Tables for these masks to answer the 
question: whether or not its converted row appear in 
some other sub-tables which we already have calculated. 
If the answer is yes, then masks are not compatible. 
  Our observation is as follows: if we consider that the 
columns are numbered in accordance with “symmetry 
consideration” stated in 4.3, then all the correct masks 
with the same N will remain compatible. That is, for each 
N there is its own "integral" Table R(N), with a 
corresponding number of lines in it. Observation has 
been tested for N = 4, 5, 6. 
  Let us begin with N = 4 (see Fig. 14). For N=4, we have 
only two correct masks (1,3) and (3,1) Their CR=27. 
CR=37 is their association (Resolution Tables intersects 
at 17 rows). Remember, removing (rearranging) the 
central point is strictly necessary! Otherwise, even in the 
case where N = 4 there will be numerous violations! 
 

 
 

Figure 14. The construction of the integrated RT for N = 4. 
 
  Note again that if we take the most left column 
numbering in Fig. 14, according the "trivial" symmetry 
in paragraph 1 of 4.1 (the column with the shift x for 
mask (1,3) corresponds to a column with a shift -x for 



mask (3,1)), then we would come to RT identical to the 
first table. Our association is not trivial. 
  Consider the case N = 5 (see Fig. 15). Apparently, 
almost all correct and “obvious” Weak Computable 
masks are shown in this Figure. 
 

 
 

Figure 15. The construction of the integrated RT for N = 5. 
The cells in this table contain two numbers: in the upper 
left corner – CR for the intersection of RT of the masks, and 
at the bottom right corner – CR to combine. 
   

  Figure 15 shows two infinite series of masks with the 
same RT: masks from the first series have the same RT: 
W = [5,5] = [9,9] = [17,17] ... = [6,6] = [12,12] = [24, 
24]…  Also we have 5 correct masks [3,3], [3,5], [5,3], 
[1,7], [7,1]. All other possibilities such as masks (3,9), 
(3,17), (5,9), and (5,17) are incorrect. 
  The case with N = 6 is much more diverse (Fig. 16). 
 

 
 
Figure 16. Left side – three identities for masks with N = 6. 

Right side – the steps necessary to calculate integral CR . 

 
  Figure 16 reveals a (seemingly endless) line of masks 
having the same RT: [5,13] = [9,25] = [17,49]. Stand-
alone mask (6,22) has the same RT as the masks along 
this line. Yet, contrary to the case with N = 5, there is no 
second line (another series). Note also that a "stand-
alone" identity [9,11] = [17,19] does not have a 
continuation.   

  The right side of Fig. 16 shows the steps necessary to 
implement to provide integrated table R(6). We used the 
correct mask with N = 6, odd n, m <40, then we added 
three correct masks with even n ([6,7], [6,14], [6,38]). 
After that, we sorted the masks out in accordance with 
ascending CR. Then, every RT of mask [n, m] was 
combined with centrally symmetric RT of mask [m, n]. 
Eventually, we started to fold the masks, starting with the 
mask having the largest CR. The results are shown in Fig. 
16. The final number (845) cannot be much lower than 
the accurate one. 
 
 
   

 
 

Figure 17. "Table of Coincidences" for Resolution Table 
for masks with N = 6. 
 
   

  Fig. 17 shows the "Table of Coincidences" for the 
intersection of RT of our masks. Black color of the cell 
means that one mask includes another (the upper mask 
includes the left one). Otherwise, cells show CR (number 
of rows) in the intersection table. If these values are the 
same and the cells are painted in the same color (but not 
in white!), it means that there is a coincidence among not 
only the number of the rows in those masks, but also 
among the RT numbers. Examples are as follows: [3,11] 
= [33,35]∩ [7,9]; [6,38]∩ [9,11] = [33,35]∩ [5,37]; 
[6,7]∩ [9,13 ] = [17,25]∩ [6,14], and so on.  
  It can be seen that the algebra of Resolution Tables is 
very intricate. 
 
5. Conclusion 

 
There is no doubt that similar "X-problem of number 3” 
exists in all dimensions [7]. 
  Using a personal computer (PC), we tested the 
following amazing statement: each and every mask in 
one and two dimensions, which includes all the points 
adjacent to the "central" point (we refer to such mask as 
simple) and demonstrates the property of central 



symmetry (that is, is symmetric with respect to the 
central point) is correct. 
  After several months of PC operation, we did not find a 
single exception! (We used the "light" test, that is, we 
checked only the first three of the nine statements. We 
found that building F arrays in two dimensions has been 
rather challenging. So, it is impossible to guarantee that 
this statement is true. Some other interesting aspects of 
the "X-problem of number 3" in two dimensions can be 
found in paper [8]. 
  Readers can download illustrative program from 
kornju.hop.ru. 
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