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Abstract

Presented is the notion that a large number ofctbj@uthor called them masks) demonstrate a
suspiciously large number of identical propertiéderftities). The connection between the
identities is hard-wired and can be implementeduyh so-called Invariants of Precise Filling.
The author verified the existence of these ideggtiind also showed that even in one dimension it
involves number 3. Author points out that even mamazing identities related to number 3 can
exist in N dimensions, so the problem of provingittexistence in N-dimensional space is called
by author as "the X-problem of number 3". Numbeis 3lirectly related to reversible cellular
Automata with three states. The author used anoapprbased on reversible cellular Automata

and computing for demonstration of existence ohddentities in one dimension.
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1. Introduction

Mathematicians and physicists are well aware airge
number of positive attributes associated with theniber
three.

The author reminds that stable orbits in a céffies
with a potential inversely proportional to the diste
from the object to the center of the force (e.gaviy
field or Coulomb field) exist only in a three-dinsonal
(3D) space. Yes, the 3D space hasmam-sequiturial
property: any perturbation in a position or velpaf the
orbiting object leads to a new stable and welludi
orbit. This phenomenon can
corresponding solutions for the motion of a poinarge
in a Coulomb field in 3D space. There are no simila
equations in other realms of mathematics that reanif
such an amazing property as those describing th®mo
in 3D space.

We can ask the question: are there other dimessio
(except the 3D one) where the vector product hasdy
properties, including the most usefidcobi identity The
answer is no, only in three dimensions the vectodpct
has good (that is, practical) properties [1]. Tanes the
lack of the useful (from the viewpoint of conseigat
laws) concept for the rotor in these dimensionadees
the ND (N£3) vector algebra simply out of practical
consideration.

We can provide more examples, for instance, ysigls
we can see following fundamental combinations: byo

three of leptons, two by three of quarks; threein
Quantum Chromodynamics (QCD¥tc. Here, the author
decided to go further and ask is theredmect(!)
connection between theroperties of number &nd N-
dimensional integer lattice.

The author decided to gain an insight into this
generalized problem of “dimension of three” using a
computer and obtained a very interesting answee Th
most unusual is that the author started his appréam
a distance, more particularly he started froswersible
Cellular Automata

be described by A lotof remarkable properties of tiellular Automata

has been discovered and listed in the book wrikgn
Stephen Wolfram [2]. Yet, here we do not need to
considerreversibleAutomataof a general form, just as a
special case, so-calledellular Automataof second-
order.

The concept of the second-order Automata was
introduced by Edward Fredkin and then studied ot
authors [3]-[5].

As shown by Toffoli and Margopolus [6], any seden
order automaton may be transformed into a conveatio
cellular automaton where the transition functiopetels
only on a single previous time step. It handles jheee
types of cells. We will not use the original defioins as
"ready"”, "excited" and "refracted", but will reftor three
types of the cells as A, B and C.



2. Reversible cellular machine on the graph

Let us prove three following simple theorems andegi Graphs with 3 nodes: e
one important definition.

Consider mixed, finite gragh=(V, E, A. We are N
using the definition from the following resource: i E \l\‘
http://en.wikipedia.org/wiki/Graph_%28mathematics%?2 !
9. Below, we will use only this definition and nohet N Maa o
developments from the graph theory. N%Ei‘;i:ﬁ’lvjak Super Weak Computable | Super Weak Computable

Here V ={v} is the node of graphE ={€} are  NOTWedk Computable | NOT Week Computable Weak Computable

a) b) c)

directed edges, aml={g} are undirected edges. Our

graph is ordinary and, therefore, does not corltzops Figure 2.

and multiple edges. Briefly, a directed edge isicted

with an arrow from one node to another, while Letthe nodes of the graph be of three colors (Aail
undirected edge is depicted with a simple junction C).

between the two nodes. The junction can be otherwis V. D{ A B Q

depicted using two arrows: one arrow leads fromenod !

to nodev and another leads from node¢o nodeu. (Fig. ) o

1). Once, two nodes andv in our combined graph are  Further, we introduce two definitions.

connected with undirected edge, these two cannot be

connected with directed edge. (see Fig. 1, lowaepa Definition one: Transliteration of graphG (G)

defined as the change in a color map of gr&pivhere
Ordi ixed h all the nodes of grap6 colored in C are recolored into
rdinary mixed grap color B, and all nodes colored in B are recoloret i

directed edges: e = (vu) | undirected edges: a = (vu) color C.

node Y no:ﬂ/u G(B= O=G
v e node . a node Definition two: Complement of graph G (G) is

defined as the change in a color map of gr&pivhere

Example Is forbidden . all nodes colored in A are recolored into coloraBd all
Ioops Zggfs'e e nodes colored in B are recolored into A. Usuallyist
complementtransformation rule is applied to the cases
“I - ' where there are no nodes colored in C.
ega J—
Q /\Qonnegctlons G(A PN B) = G
ﬂ Let us enter the rule of transformation of coldams
graphG:
Figure 1. Gt - q+1
i This rule depends on the existenceableast one node
Definition 1.

colored in Cin the end ofdirected or undirected edges
all of which start from the same node(Let us refer this
condition as P-condition).

So, if P=0 (i.e., there are no nodes colored )inti=n
one can make following recoloring

The graph is called Super Weak Computable when
there is a closed route through all the nodes tisas
both the directed and undirected (according the
orientation) edges

ale ale alg

V0 — Vl - e > VO _ v[=A |:>VH1=A
Definition 2. P - 0 _B _C
The graph is called Weak Computable when there is a (I) V=DV, =
route v,=Cv,,
&% a &

Voo V= o W In the text below, we refer to this recoloringrake I.
following which one can pass through all the noasisg If P=1 (opposite situation), we make recolorirging
only undirectededges. So, it is clear: when the graph is following rule
Weak Computable, it is also Super Weak computable
(see Fig. 2).



P=1 vt:Ar“'>Vt+1:C
(II) v,=Bov, =4
v,=Cov, =B

We refer to this recoloring as rule 1.

Theorem 1.(About reversibility.

Gt - G¥—1
Proof.

To prove the above theorem, it is enough to camsall
five events (shown by numbers in circles) from Bg.

= C=>B
P=0 Vi = O P=1
yo= @A = A vy =@A = C
1 @B = C 1 ® B A
— —
rule | ?“ (Et rule Il ?“ (Et
G+ Gy G+ Gy

1) Node of color C always transfer to node of color B
2) Node of color B can be formed only by node of color C

Figure 3.

Start Points
v, €{4,C}

transliterations

T - period
of return

transliterations

Grp= Gan= Gr- ':('15)

e A
GT* = G-(T-l): GT--_%';%T &%& Y, € {A’B’C}

v, eunknown v, € unknown
Mirror Points

'n+1 E> Gt*

n*

Gy

Figure 4. Propagation of recoloring of graphG with time.

Consider the time point located between the stafe
graph at time 1* and time 1 as the Start Point (&)
continue the motion in two directions: let us calli
“forward” time and “reversed” time. Due to the fdbat

Consider case (1). This case is obvious. If we dogyr graph is defined as finite, these two motichat(is,

transliteration, then CB will be BC.
Consider case (2). Recoloring rule is rule Ittsgre are

no nodes colored in C among the nodes of the graprka

changes in color of our graph with time) will mesit
some time poin™* - T. The graph color “state” will be
at this point, whereGy is the transliteration ofr.

where directed (or undirected) edges lead from nod et ys refer to this point (graph state) as therdiPoint

V,_, - Therefore, in the derivative of this graph (iia.the

graph that emerges after recoloring) there are oues
colored in B. (Note here that the nodes coloreB itan
be formed only from the nodes colored in C).
Consequently, in the transliterated graph, it Wwélno C
nodes among all its nodes. This means that thefean

rule is still rule 1. Also nodev, in graph Gt will be

colored in A in accordance with rule I. The resteth
cases can be considered in the same way. The thésre
a simple consequence of two statements shown ir8Fig
Assume that recoloring of graphs starts at time O.
Also assume that the nodes have two colors: A alad B
the start. This means that during the next stegrétare
no nodes colored in C; so rule | is applied to ¢hére
graph) the graph will be converted into translitem of
itself, consisting only of A and C colors. (All nesl
colored in B will be transformed into the nodesocetl
in C, whereas all nodes colored in A will keepdtdor).

(MP), and namé as theperiod (or the period of return).
Here, we use the main property odversible finite
Automata every such a construction “is obligated to pass
through its starting point”. That property is quitatural.

If any recolored graph has only one predecessar ifas
easy to find this predecessor: let us make tramation,
then one step forward, then make transliteraticairgg
then any recoloring of the graph is cyclic. Alseere is

no “branch” that merges with this “cycle”.

If T> 2, then the Mirror Point exists. In this casd| f
period of return (2) is an even number. Otherwise, the
graph in the Mirror Point is transliteration ofaté This
means that all nodes of graph are colored in A,gaagh
simply stays the same.

Let us prove following theorems.

Theorem 2.(About coloring the Mirror Point).

LetT > 2 and the graph is Super Weak Computable. Let
SP be the state between grdph that has colors A and
B and graplG; that has colors A and C.

So, the graph will go along reversed-time path (see Then Mp js the state between the gréplthat has also

Theorem 1). Note: for each step taking placena¢ti=
n* = - n + 1, the graph will be the transliteration of the
same graph at time(see Fig. 4).

only colors A and Band graplGy- that has onlgolors A
and C.Besides, SP is not equal to MP.



Proof.

Let us start with the last statement that SPoisequal
to MP. The Mirror Point is thefirst time when
transliteration ofG 1« at timeT* equalsG 7 at timeT. If it
is not the case, we would fold in half our Fig. dda
repeat the graph construction. So, we get a cantiaul.

If at time T graphGy has at least one node colored in C,
then the original node where the edge leadingemtide
colored in C starts must be also colored inR&dploring
rule Il cannot be applied in the Mirror Point. Iteans
that nodes colored in A are transformed into nodes
colored in C, and the nodes colored in B are transied

into nodes colored in A. Yet, none of the nodes is

transliteration of each othgr So, applying recoloring
rule | and moving through all the nodes along thete
leading to “another side”, we can make a conclusiarn
all the nodes are colored in C. Then, the graplest
changes fromd&ll nodes are Cto “all nodes are B and
from “all nodes are Bto “all nodes are C(T<3). Here,
we immediately see the contradiction. So, theoreimm 2
proven.

From this theorem, follows the theoremeofisting of
numberA.

Theorem 3.

If our graph is Weak Computable, then it follothsit
anyy; of its nodes when moving from SP to MP

Vi,t:1 - Vt:T

is transformed into equal number of nodes colored i
(Np), B (Ng), or C (N;). Moreover, the number of nodes
colored in B is equal to the number of nodes calare
C.

- V|1:2 - ..

Ng = N¢ = N

Let us introduce parametér= N4 - Nac.

Proof.

Let us start from arbitrary node and move aroalhthe
nodes in the graph following undirected edges, thed
return to the initial node. Every new step meanisisp
one” in our new numeration. It does not matter Swahe
nodes may be passed several times on our way (gee F
5).

nodes
= °
Start width )
undirected
s edges
., path X X
New number N u=yv

/

10,0 W=u=1=v,
VVVVVVVVVVVV 14 10
u'=u'=u"=v,

TR TR TR TR AR AR TAR THE TAR TR T Tk

Figure 5. Our “numeration” of the nodes.

Let us arrange the nodes along a single horikd¢inea
(circle). The most important thing in our numeratic
that to the left and right sides of any node theitebe a
node that has a “tie” with another node through an
undirected edge.

Let us look at Figure 6 starting from panel (a)

e nodes 7 < hodes %1
SP Sp >
= @ = undirected
: edges : edges .
wils A =C
tx= C / x 1 7 \\ ﬁtx= C/ %tXﬂ =\\
N hale A ' v
”ti]l . \ %t)-(!—ll =//C
then one of the this S ’
: . nodes are coloring T
1 1 into C 1 Can not
I\A:PI:>1 l M_P:>l l be! (One
a) b) touch only)
A 0 0
1*qulflilfl_ilfllllftfﬁ (See Fig. 5)
SP >
5 4 INANXA
3 C
4 B
t s [ops A A
D) 00 A
»° e e 9
T1[8 OEKEDNA|
MP T* s|a]o]d [
T iﬂ-
©)

Figure 6. lllustration of Theorem 3.

Due to existence of the “directed half” edges lagdi
from nodeu™*!, to nodeu”; and due to the fact that, is
colored in C, then one of the nod&&', ;, u™, u*,,
will be also colored in C. Let us pretend thasinbt the
case and ask which color will be for the node maukge
a central question mark (nodé**) in Figure 6a? If this
node is colored in A, then the node beneathit'(,,) is
colored in C. (Note that transfer rule here is dl)leThis
node cannot be colored in color B, either. Thedeno
u**t,, above it is colored in C. Yet, node*!, cannot be
colored in C. So, we have a contradiction here.

Then, We also note that a “double touch” is ahm
possible:u™; = B cannot be transformed into™ .=
C. We must remlnd that here we use transfer ruleSi.
in this caseu***,; must be colored in A. Again, we get a
contradiction.

Therefore, the “double-touch” on either right left
sides is impossible! So, when moving from SP to MP,
our figure consists of non-intersecting CB bandse(s
Fig. &). Thus, the theorem is proven.

Take Weak Computable graph. Consider gr&hh,
consisting of colors A and B and having its owand/;

also consider complementary graf@ comprising only
colors A and B with its owrT and 1. (We assume that

T=>T , otherwise, just rename;. anday).



Let us take arbitrary node for first graphG;- and

consider the entire array of colorf) the node passes

on its way from SP to MP. The size of this array.is

Let us enter four arrayg(t), by(t), c(t), A(t); wheret
=0,1,2.T-1

Now, a/(t)=1, if v(t)=A, anda(t)=0, otherwise.The
same rules are true foy(t), c,(t).

So

AD=Y (2a(p)+h(P+ o(P-1)

O<pst

Let us define three arrayg(k), A(k), f(k),and let us
call arrayf as “integral phase”.

C/(k)=0; but if we can findt which makes value
k=A(t)/2 an integer number and therefowt)=C , then
Cu(k)=1.

If C(k)=1, then we can write thd{(k)=t. Otherwise,
we can assume that it is “undefinefi{k)=-1.

We can determine properties of arigyk) in the same
way as we did fo€,(k) array:A(k)=0; but if we can find
t which makes valu&=(A,(t)-1)/2 an integer number
and thereforev(t)=A, then A,(k)=1. (By analogy with
A,k) we can define arra,(k), but it is easy to show
that it coincides wittC,(K)).

c u

t K MY (Al [A kK [(SP)
0 5 cw-1 foo0 0 |A GO=0

1 400" B )1 @ | Al 401" gm0

2 / C()=0 3 |B om=1  f)=1
3 A)=0_~ g =0 5 |A BY 4()=0_~p,m)-1

4 =0 7 [A \ i =0 |

5 A| 2O B0 9 |A A| 207" 5,0

6 o=l 5@~ @ [\ 7/ GE=0

7 (BY 130 591 1 |B A| AL g 3=0

8 C@=0 ® |c ) G@=0

9 A@=1_" B0 13 |B A| A& g =0
10 15 “ c)=1 L7715 |A =1  [()=6
17 |A| \YBY A0~ 591 17 |A BY 490" g,9=1
12 @ [€] (690 c CO=1 [0

Fig. 7. Examples of constructing arraysC,(k), Ay(k), By(K),
fu(k). For nodev(t) with the beginning: B (SP) CB AA CB A
CB AAA C and for node u(t) with the beginning: A (SP) A
CB AAA CBCB AA C. From these bands, we can constrdc
their secondary bands where the cells A are transfied
"through" an empty cell. Because C and B are alwaysn
pairs, values for A(t) for the cells C are always even (see
circled A(t) in this figure).

Now, we can define following arrayS; for coloring:

au(1), bu(t), 6 (9, A(t), A (1), Cu(D), T, (D-

Finally, we introduce an important definition.
Consider the case where vallie T can be divided by

3 with no residual=(7+ f)/3) and assume that all
eight conditions are fulfilled as shown below.
First three conditions are:

G =Gr [
A== [
T-T=1 [3

Next four conditions are:

C(+C(RW=1 [
AK+AR=1 5]
AMK=C(K 8
Cuk=AK 1

for any nodesr andk =0, 1, ...,K-1.

Additionally, from ratio [4] we can define fulhiegral
phase with modulus 2

, fi(k) mod 2 if £(k)# -1
ol -

' 2 +j_v’(k) mod 2 otherwise

So we can write the last (eighth) condition as:

FZ(0)=0 (mod 2)
F?(2k-1) = F?(2k) (mod 2) (8]
and if K is even

F?(K-1) = F?(K-1) (mod 2)

for all nodess andu and for any Ok<(K+1)/2.

If all the above conditions are met, then we ceake a
conclusion that graph8,. and G;- move from SP to MP
with conservation of thdnvariant of Precise Filling
(IPF).

3.“X-problem of number 3" in
dimension. Definition

Consider that. nodes of the graph are placed on a circle
and numbered as=0, 1, ...,L-1.

The edges of the graph are defined by two integer
numbersn (conventionally “left”) andn (conventionally
“right”).

There exist only edgex,(x-(i+1)*b;(n)) mod L) and
(X,(x+ (i+1)*b;(m))mod 1) for all x andi when function
b, is significant. Hereb(n) is the i-th bit of binary
expansion of numbern: n=by(n)+ by(n)*2° +
bo(n)*2*...+ by(n)*27). “Mod L shows that the circle is
continuous and closed (no gaps). Let us refer th su
construction agutomat of Configuration 2xGAC23) in
one dimension.

Suppose that the above introduced integeaadm are
odd. Then, our Automat is Weak Computable. It is so
because it contains all undirected edge$xt-1) modL).
One can also see that if the mask contains Wpits),
Bp+1(n), (M), B(m) = 1 (e.g., masks (6,7), (6,14),

one



(6,22)), then this mask (Automat) is Weak Compugabl
too.
Suppose that there exist suckan m that Automat at

any L having any starting color&;- and Gy always
goes from SP to MP while keeping IPF constant. Ut
call it a “correct mask”. In other cases, the mask
“incorrect”.

From this point, we can constitute the “X-problein
number 3” in one dimension.

We can prove (or disprove) that the masks ({1L3),
(3,5), (3,3), (5,5)etcare correct. (For example, we know
that mask (1,5) is incorrect). A full list (moreegisely,
apparently full list) of correct masks till the uakn, m =
39 is shown in Figure 8.
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Figure 8. The matrix showing which of Weak Computabs

masks is correct. Correct masks are painted in diéfrent

colors depending on N, where N is the total numbeof

pixels in the mask plus one. (Note that we include

“central” point into our mask). Incorrect masks are shown
in dark blue. All the central-symmetry cells (the ells on the
main diagonal of the matrix) are correct. In cellswith N

<10 denotes the value ¢ (with small c) for each masks.
Since all the values § are odd we have introduced the
designation g = (Cz-1) / 2. An asterisk (*) indicates that the
test has not been completed. ("End of test" — thatsi
determined entirely all 6 sub-tables, and found thathey

pass each other by substituting from a figure 11)}However
defined three sub-tables. Two stars — defined lesalstables
(See explanation in the text).

First, we illustrate the fulfillment of the eight
condition (see descrption of the conditions in thet
above) for the correct masks (see Fig. 9).

G, o [AJAJATATATBIATATAIBTA] Mask (1,3)
0123 456 78 10 E —
T T T -0=2
110 0 0 1 1 1 1 1 1 4 1
20 0 0 0 1 1 -1 1 1 1 1 - = — =1 =
370 0 -1 00 00 10 0 0 L=n K=34 1 3
40 0 1 0 9 0010 00 =
51 0 1 0 1 1 1 0 1 1 T=T=51]| A=0
61 0 1 0 1 1 1 01 1 ]
770 0 1 00 0 0 0 100
8 0 0 1 0 0 0 0 01 0 0
ST 0 0 0 1 1 0 0 0 0 1 1
000 0 0 1 1 000 90 ] 3
o 01 00 1 1 1 100
12200 0 1 0 0 1 11 00
"1 -0 -0 1 -1 -1 -1 -1 - -T -
&\ 14 -1 0 0 -1 -1 -] -1 -] 1 -1 1
S o9 9111003
%LX T 1 1 0 0 0 0 0 1 4 1
B 1 110 00 0 0 11
190 1 1 0 0 0 0 0 0 0 0
aa1 o0 00000 |G v [BIA[AIA[B[A[B[B[B]A]
21 1 0 1 1 0 0 0 0 1 - 012 3 4 6 78 9 X
2201 1 0 1 1 -0 0 0 0 1
B | o
24 1 1 1 0 0 -1 1 1 -1 0 0 X 511911149041
LR A
260 -1 1 0 -1 1 1 1 1 -0 1 1 \N‘X4|—|n—||||—111
270 1 0 1 0 0 0 10 00 e e e
2800 1 01 -0 0 0 0 00 , j
29| 1 T -0 1 1 1 0o -1 1 60 00 0 01 000
I T TS T T R W R T B | k
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G B O T B B B B B
Figure 9. lllustration of fulfillment of the eighth condition

for correct masks (1,3) and (1,1).

It is obvious that after the first row, the filj of the
table is going by “pairs of lines”. In Fig. 9, thest line
number (k=33) for mask (1,3) is odd. This number
should not necessary be odd, it can be also even.

Let us draw our attention to outgoing and verwedul
observation, which, perhaps, will help us to sahe"X-
problem" some day.

Let us consider a complete integrated phase with
modulus 3. So, let functioR® (k) be defined as

fgmod3  if f(k)#-1

) =q  _ .
3+f (k) mod3 otherwise

Then we note that the numbers in any line (extefite
first one) are unambiguously determined from the
previous line, facing a numbd&® (k) of points of the
mask directly above it. Here, the points of the knalso
include a “central' point. The number of
configurations leading to values 0, 1, 2, 3, 4ré equal
(see Fig. 10). We refer to this algorithm Resolution
then we refer to the corresponding table for numitgr

1, 2, 3, 4, 5 aResolution Tabl¢RT); finally, we refer to
number C; of rows in each sub-tables #&esolution
Constantfor each “correct mask”.

So, having the first line and the Resolution Eahle

can straightforwardly and without difficulty reséothe
entire functionF® (k). Therefore, we can restore the
matrices C, and A, too. The criterion that we have
reached the end (that is, we have reached MP), is
precisely thatF® (k) mod 3 = 0 along the entire line
(i.e., for allx).

all
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Figure 10. lllustrations to main observations madefor
masks (1,1) and (3,5). This figure shows the Resaln
Table for mask (1,1) and initial lines of the Resoliibn
Table for mask (3,5). We show the Resolution Tableof
numbers 0, 1, and 2 only. The Resolution Tables for
numbers -0 (3), -1 (4), and -2 (5) can be obtained
automatically, as "complementary" to the original RT.

4. Resolution Table for correct masks in one
dimension. The first observations

4.1 First and foremost observation.

It is clear that the Resolution Table has vemmeé
symmetry. In the case that we have only one of=si
=1, =2, =3(-0), =4(-1), =5(-2)) sub-tables, we can
immediately determine five remaining sub-tables.dbo
this, we make a substitution as shown in Fig. Il F{g.
11, the "base number" for each of the sub-tablshasvn
in gray. Each sub-table contains the base numbatl in
the cells. Such variants are shown by a dashedshaé
in Fig 10).

O|ON|N—‘|—‘®
N|—‘—\|OOI|\)®

0
oolNNl—\—u@

=N ol = |NI|S
N_u_‘olowl/i)
_\N|o_\.r\>o|,'\',.2

Figure 11.

Let us take a sub-table to output the number$, @td
we just call it a Resolution TablRY).

So, RT is the set of LCrows {ay, &, ..., &.1}, where

a 0{0,1, 2,3,4,5} (For numbers 3, 4, 5 we will use the

old notation, or0, 1, 2 or -0, -1, -2 where it is
comfortable). Note that we have an "isolated positin
our mask: it is a central point.

Let us putcolumn number @s the central point in the
Resolution Table. In order to establish a correspond
between the points of the mask and the columndligtst
the points of the mask from left to right. For enste,
considering mask (3,5) we obtain: "column 0" in the
table — the central point (offset 0), then for tocoh 1" —

the point with offset -2; for "column 2" — the poiwith

offset -1. Further, for the "3 column" (here we sldo
jump over 0) — the point with offset 1. Finally fitre last
column, we have the point with offset 3.

There is one more symmetry. If the mask is mador
with respect to the central point, the same
correspondence is kept between the column and the
points of the mask: that is, the column which dfigasx
is now assigned to a point with offset and so on.
Eventually, we will end up with the same Table. Mos
likely, this symmetry is trivial.

4.2. About the contents of RT.

The masks are divided into three classes in detme
with the numbers in their Resolution Tables.

4.2.1.Smallclass masks (RT contains only the numbers
1, 2, 4(-1)). This class is depicted by the laé¢kany
symbol in the top-left corner in Fig. 8.

4.2.2.Middle class masks (RT contains the numbers 1,
2, 3(-0), 4(-1), 5(-2). This class is depicted bttdr p”

(p stands for partial) in the top-left corner in Ray.

4.2.3.Full class masks (RT contains all numbers 0, 1, 2,
3(-0), 4(-1), 5(-2). This class is depicted bydettF" in
the top-left corner in Fig. 8.

Small-classmasksinclude (apparently?) all masks with
central symmetry (it was checked foxk 40).

We denote the sum in RT in zero column of number 0
1,2, 3,4,5a5%%, % 92 9° 9% 92 We denote the
sum of number 0, 1, 2, 3, 4, 5 in other columns'§ss™,

s? 8% s', s%

These values for maska, (m) with oddn, m <19 are

shown in Figure 12.

“left” side of mask

1 3 5 7 9 ¢ 13 15 17 Mask(@n) n=
8; 16; 32; 4;
1 18 65 311 an |™ s - 241
20; _I3z; 32; 4; 16| [0 44|
3 7| 67 91 175 33 | "os|fo; 76| 241
x 5; 131 32; 32; |64, [16; | [o;108] 2, ,
é 5 28;144 103 139] 345 6.5 | 65| |oiros ] 2+1
620 :102; o6 o;100; 120 645 os 216 64; | [0;240
5 7 oz o100 | o o] 245 | 3w @7 o7 |0: 486
@ 32; [32; |64; 16; 0;108 | 3
T 9 181] 133] 787 ©,9 | "e5]|oi10s | 2+1
3 0; 436 54;  [ronim 6a; | [0:332
£ " 34,734 3730 s 1,11 " 454] |os628
= 13 0; 451 0; 753 j0; 236; 108} 64; 0; 300 =
N 16,740 38; 1040} o 470 (13,13)]  435] |o0; 504
0; 532 0;597 | 0,592 | 0; 598 101;
15 0;1066|24;864)5; 1212 8; 1230 | a{g| (15,19 ? rd
B 16, |[0108] 4
17 . a7.17)| 65| [oin0s | 241
0;108 | ok, 11}
amount 1 s°lsls? amount . @+1)
inthe0 | S, . finthe 2. | N3 2 s 57 38
column So 22| g | columns S,D(,z)
s g
0

Fig. 12. Summary of the numbers 0, 1, 2, 3(-0), 4f; 5(-2)
in RT. (N-total is number of points in the mask, irluding
the central point).

We can say that the correct masks are divided int
completelycorrect (that is, those for which'$%2= 0)
andnot completelygorrect.

Moreover, we divide completely correct masks into
completely correct of the first kind (masks witfi'ss 2%

! where the sub-table with zero column is equal to a



simple enumeration of all possible combinationst+af
and -1), and of the second kind (otherwise).

Completely correct masks of the first kind aré al
symmetric masks fan <15, and masks (1,3), (1,7), (3,7),
(5,7), and (3,11).

Completely correct masks of the second kind aaisk®
(3,5), (15,17).

We denote RT of the mask (n, m) as [n, m], siniply
using parenthesis instead of brackets.

We also point out that there is the identity hesw
following RTs: [5,5] = [9,9] = [17,17] = ... = [2+1,%
+1] wherek > 1.

4.3. Building Resolution Tables for masks of type
(1,2-1).

First, we should number the columns. Let us dait i
accordance with the rules described in paragrapto.
this chapter (we put column number O as the centra
point, and so on).

Now let us sort out the rows. Assume that we hrave
(-1, 2, 0, -2, 1). After we transfer the “0-“ colunmthdt is
the first element, “-1”, of the given row) from tHigst
position to the last position, we obtain followisting:

(2, 0, -2, 1,-1). Now consider this string as a record
number in aheximalnumber system, where the bits are
counted from right to left: (2, -0, -2, 41) = 4*6° +1*6"
+5*6° +3*6° +2*6" = 4 +6 +180 +6048 +2592 = 8830.
Finally, we reshuffle the rows in accordance witfe t
ascending order of these numbers.

At his point, Resolution Table for masks (£;12 can
be easily constructed by the method of inductioseda
onk (see Fig. 13 for details)

k
ﬂ'{z Inductive Step Resolution
Table for
k => K+1 | (nm= 1251
column “0” - 1+k
k=1 k=2 =3 C => C +1 G 3
from the last column
r { . 1< if'xﬁ/=§
;,'( o] Kol K 6l 1 e
olo]1]1f2fo
Q211121011
r=C, =3 2| 02|71 7]2
r=>rx3 Y
< if x7=1

Figure 13. Building a Resolution Tables for mask (12°-1)
by method of induction.

A zero column is obtained by simple linear fraaia
the numbers 1 and -1 (see Fig. 13, zero columhas/s
on the left). Figure 13 shows the Resolution Tabke
table on the right) fok = 1. Now, we construct the
induction step for other columns. In one step,rithmber
of rows increases by a factor of 3g(@creases three
times), but the number of columns increases byctorfa
of one.

Let us follow operations as shown in Figure 18eT
table can be "tripled" using a trivial method, ahd new
column is obtained from the previous one in accacda
with the table below (see Fig. 14). It can be shahat
the obtained mask is the completely correct masthef
first kind.

Also it can be emphasized that we obtainaid
Resolution Tables fasolid masks, that is masks“(2,2-
1) wherek, p > 0, and RT masks (%2 -1) include the
entire series with constaktp. Yet, more will be shown
in the next paragraph.

4.4. Compatibility of Resolution Tables for various
correct masks with the same number of columns.

Let us consider several masks with the sawnéwe
remind here thaN is the total number of pixels in the
rnask, including the central one), and check eauls 1af
the Resolution Tables for these masks to answer the
question: whether or not its converted row appear i
some other sub-tables which we already have cadézlla
If the answer is yes, then masks are not compatible

Our observation is as follows: if we considerttttze
columns are numbered in accordance with “symmetry
consideration” stated in 4.3, then all the cormeetsks
with the saméN will remain compatibleThat is, for each
N there is its own "integral" Table ® with a
corresponding number of lines in it. Observatiors ha
been tested faX = 4, 5, 6.

Let us begin withN = 4 (see Fig. 14). Fdi=4, we have
only two correct masks (1,3) and (3,1) Theig=€7.
Cr=37 is their association (Resolution Tables inteise
at 17 rows). Remember, removing (rearranging) the
central point is strictly necessary! Otherwise,reirethe
case wher&l = 4 there will be humerous violations!

0123 0123

1

NmO Lo

0123
1111 111 1. IENH
11118 111418 1)1 113
11118 11118 IERE
11418 11118 1]14-12
11118 11118 11118
-0=3 11118 101148 11118
111 1= 111 1% IERH
1=4 11118 11118 101112
1128 Al11 2 )11 28
2=5 1228 Al14 28 101 1-28
af1208 (2218 11220
A(1218 1l222m9 1)1 208
411258 A|221810 1(12-1%
Is equal BIEARE LIFERER) 11 288
RIFAEH |24 2212 1021 1a
alz1-28 l211813 1]z 113
0123 1|222s9 11021 1/21-2a R, =
s [ [ R ) pab
ae E EH R : H
DR Az 111 411 28 4|z 208 (131U [3.1]
oo — 1212812 Al ze 12 24510
1208 == |d[211813 Al1zomn 1|24 18 11
11271815 112 A1 21818 1|21 2a 12
11123818 122814 A1 2818 1|2112 13
(1208 1211 1102 1s i
A[1213718 1|21 28 10228 Resolution
Al ze18 alz1e 10218 Table
111 2
101 1-28
111218
112 2a 14
Helll NElNeN |5 Cpo= 37
1|4 212 15
Mask (1,3) Mask (3,1) 11 2816 B
Tlz1m (Cos 676 =216)
C.=27 C._=27 1121 28 R
R R 1lz 198

Figure 14. The construction of the integrated RT folN = 4.

Note again that if we take the most left column
numbering in Fig. 14, according the "trivial* syminye
in paragraph 1 of 4.1 (the column with the shiffor
mask (1,3) corresponds to a column with a shiffor



mask (3,1)), then we would come to RT identicathe
first table. Our association is not trivial.

Consider the casdl = 5 (see Fig. 15). Apparently,
almost all correct and “obvious” Weak Computable
masks are shown in this Figure.

RT B3 w B35 (53 17 11
C: 41 8 17 17 8 81 =5
41; |41; |41; |41; |41,
;3,31 41 81| 117| 17| ‘81| 81 T
w81 63; |63; |[51; |51; ¢|Rz
135 135) 111 111
81; |51; |63; W,
[3.5] 117 tsg] ta7] 13| 132 {g?}} O B3
53] 117 63; (515 S
53] 135] 147 [1.71n [7,1] = [3,3]
(.71 8 411’21 (but BSINBI#W |
7.4] 81 Cpps sy w=49£81
as well as w
n n Wn[3,5] #[5,3]n[1,7] :
< [6,5]=[9,9]=...= B2 WAL TI#5317A])
N _ _ _ [62"82"
[6,6]=[12,12] =...= " " Ce=193 (D

Figure 15. The construction of the integrated RT folN = 5.
The cells in this table contain two numbers: in theupper
left corner — Cg for the intersection of RT of the masks, and
at the bottom right corner — Cg to combine.

Figure 15 shows two infinite series of masks witb t
same RT: masks from the first series have the dime
W = [5,5] =[9,9] = [17,17] ... = [6,6] = [12,12] {24,
24]... Also we have 5 correct masks [3,3], [3,5]3[5
[1,7], [7,1]. All other possibilities such as mas{&9),
(3,17), (5,9), and (5,17) are incorrect.

The case wittN = 6 is much more diverse (Fig. 16).

Cyo > 845

Ne | RT |Cq CRzJ: [n,m] U [m,n] = [n,m]*
C.=225 [6,38] | ML I WM [ W 1 |B71 |99 117 845 (+0)
C=171 [6,22] W I EE W 2 |[B.M] (123 (147 ————— 845(+0)
/ 3 |51 135 |179 i 845 (+0)
/ e 4 |71 |161 | 207 845 (+8)
[17,40] HITHCETTHE | 5 [[0,13] 165 (207 837 (+0)
Ce=171  [9,25] R 6 |117,251 171 | 219 837 (+24)
[5,13] ECECEEm 7 |15.13] [171 |243 813 (+0)
8 |[6,38] |225]303 813 (+0)
[6,22] =[5,13] = [9,25] = [17,59] = ... 9 |91 |213|273 81’3 (+0)
10 | 16,14] |213|273 815(+6)
C.=243 3351w wemm W | |14 |[33.35] 243|333 807 (+82)
=213 [17,19] BT mema . 12 | [6,37] |243|339 —-—-—-72/5 (+40)
" [o,11] ETmEm 13 | [1,15] |243|379 |— 685 (+112)
19,111 = [17,19] # [33,35] 14 |17.91 |363]573 | —

Figure 16. Left side— three identities for masks with N = 6.
Right side— the steps necessary to calculate integralrC

Figure 16reveals a (seemingly endless) line of masks

having the same RT: [5,13] = [9,25] = [17,49]. Stan

The right side of Fig. 16 shows the steps necedsary
implement to provide integrated tablé®’RWe used the
correct mask wittN = 6, oddn, m <40, then we added
three correct masks with even([6,7], [6,14], [6,38]).
After that, we sorted the masks out in accordanith w
ascending & Then, every RT of maskn[ m] was
combined with centrally symmetric RT of magk, [n].
Eventually, we started to fold the masks, startuitly the
mask having the largeskCThe results are shown in Fig.
16. The final number (845) cannot be much lowentha
the accurate one.

RW RW

RT ¢, ne 2 3 4 5 6 7 8 9 10 11 12 13 14
[B71 199 |1 89 89 89

[3,11] 2 89 99 99

5,71 3 99 111 | 129 111 129

6,71 4 105 105 | 123 129 153 115 [ 123
[9,13] | 165 | 5 123

[17,25] | 171 | 6 123

[513] | 171 | 7 109
6,38 | 225 | 8 153 (165 | 153 163 | 143
@111 213 | 9 153|135 123
6,141 | 213 |10 165 143
[33,35] | 243 |11 153 [ 135
[5,37] | 243 (12 153 | 153
[1,15] | 243 |13 123
7.9 | 363 [14

Figure 17. "Table of Coincidences" for Resolution Take

for masks with N = 6.

Fig. 17 shows the "Table of Coincidences" for the
intersection of RT of our masks. Black color of twll
means that one mask includes another (the uppek mas
includes the left one). Otherwise, cells show(@umber
of rows) in the intersection table. If these valaes the
same and the cells are painted in the same calbmt
in white!), it means that there is a coincidenceagnot
only the number of the rows in those masks, bub als
among the RT numbers. Examples are as follows1]3,1
= [33,35]n [7,9]; [6,38]n [9,11] = [33,35]n [5,37];
[6,71n [9,13]=[17,25]n [6,14], and so on.

It can be seen that the algebra of Resolution Faisle
very intricate.

5. Conclusion

There is no doubt that similaX*problem of number”3

alone mask (6,22) has the same RT as the maskg alorexistsin all dimensiong7].

this line. Yet, contrary to the case whkh= 5, there is no
second line (another series). Note also that andsta
alone" identity [9,11] = [17,19] does not have a
continuation.

Using a personal computer (PC), we tested the
following amazing statement: each and every mask in
one and two dimensions, which includes all the {oin
adjacent to the "central" point (we refer to sudiisknas
simple) and demonstrates the property of central



symmetry (that is, is symmetric with respect to the
central point) is correct.

After several months of PC operation, we didfirat a
single exception! (We used the "light" test, thatwe
checked only the first three of the nine statemeWwts
found that building= arrays in two dimensions has been
rather challenging. So, it is impossible to guazarihat
this statement is true. Some other interesting cispef
the "X-problem of number 3in two dimensions can be
found in paper [8].

Readers can download illustrative program from
kornju.hop.ru
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